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1. Introduction
The Paleocene-Eocene Thermal Maximum (PETM) was a significant global warming event that occurred 56 mil-
lion years ago1, characterized by an increase of ~5-8 °C in mean annual global temperature2-4. Among the pano-
ply of physical, chemical, and biotic effects associated with the PETM, this brief interval (~200 thousand years2) 
marks the first appearance of primates of modern aspect, or ‘euprimates.’ The first euprimate immigrants to 
reach North America were the omomyid Teilhardina brandti and the notharctid Cantius torresi5-7.
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δ18O from deep-sea benthic foraminifera collected at Deep Sea Drilling Project and Ocean Drilling Program Sites; presented in Ref. 9
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While euprimates immigrated to North America just after 
the Paleocene-Eocene boundary, plesiadapiform stem pri-
mates had already diversified during the Paleocene in 
North America. One family, the Microsyopidae, is com-
monly found during the PETM and is represented by 
Arctodontomys wilsoni and the diminutive Niptomomys do-
reenae. These endemic taxa are recovered from the same 
PETM fossil deposits as euprimate immigrants, are most 
likely arboreal, are of similar size, and have qualitatively 
similar tooth crown morphology. These factors suggest the 
possibility of competition for dietary resources. We used 
quantitative metrics of dental topography that differ 
among extant primates8 to test if primate taxa from the 
PETM showed evidence of dietary partitioning.
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3. Results

Arctodontomys Cantius Niptomomys Teilhardina

0.
46

0.
48

0.
50

0.
52

0.
54

0.
56

0.
58

Relief index (RFI)

Arctodontomys Cantius Niptomomys Teilhardina

60
80

10
0

12
0

Orientation patch count (OPCR)

Arctodontomys Cantius Niptomomys Teilhardina

15
0

20
0

25
0

30
0

Dirichlet normal energy (DNE)

• Arctodontomys clear outlier for RFI, likely incorporating more structural carbohydrates into their diet than 
other PETM primates
• Kruskal-Wallis one-way analysis of variance significant for RFI and OPCR, but not for DNE
• Large-bodied taxa (Arctodontomys and Cantius) not significantly different for OPCR or DNE, but significantly dif-
ferent for RFI by Mann-Whitney U test (p = 0.024)
• Small-bodied taxa (Niptomomys and Teilhardina) not significantly different for RFI or OPCR, but significantly dif-
ferent for DNE by Mann-Whitney U test (p = 0.002)

Taxon

Arctodontomys wilsoni

x(RFI) x(DNE)
Cantius torresi

Niptomomys doreenae
Teilhardina brandti

NGroup Est. Body Mass (g)*

Microsyopid plesiadapiform

Microsyopid plesiadapiform
Omomyid euprimate

Notharctid euprimate
3
6

7
6

530-830
0.58 101.2 278.9
0.49 88.7 227.1

0.51 77.4 267.4
0.49 65.2 200.250-145

120-270

10-30
*Body mass estimates based on area of M1 using Ref. 15, “Prosimian Grade” regression, reported as averaged 95% confidence intervals of full sample

x(OPCR)

Euprimate taxa Microsyopid taxa

Teilhardina brandti Cantius torresi Niptomomys doreenae Arctodontomys wilsoni

1 mm 1 mm 1 mm1 mm

4. Discussion

Several trends emerge from our results: RFI is higher for the microsyopid primates compared to the euprimates, 
but only Arctodontomys is a significant outlier. This indicates that Arctodontomys may have been incorporating 
a higher proportion of insects in its diet compared to other PETM primates. The lower DNE of Teilhardina relative 
to the small-bodied Niptomomys reflects greater bunodonty in the euprimate and may indicate relatively greater 
emphasis on fruit eating. The larger-bodied Arctodontomys and Cantius have more complex crown morphology, 
as indicated by higher OPCR, which would have made them more adept at processing tough food items such as 
leaves. Despite marked differences for some taxa in certain metrics, we note that generally the PETM primates 
are quite similar to one another, especially compared to the wide range calculated for these metrics in extant pri-
mates (e.g., see above). Despite non-overlapping body size and potentially sharing the same habitat, either of 
which could serve to differentiate diet, the teeth of both endemic microsyopids and immigrant euprimates 
appear adapted to process foods with similar mechanical properties. These early primates may therefore may 
have competed for food resources during the PETM.

Modified from Ref. 13 with data from Ref. 16
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Occurrences of primate specimens
used in this study

Primate specimens were collected in the Cabin Fork drainage in the southeastern Bighorn Basin of Wyoming. 
After a decade of fieldwork, this region has produced a collection of ~8,500 PETM fossils, high-resolution inte-
grated chemostratigraphy, lithostratigraphy and biostratigraphy10, and is the only place where the unique flora 
of the PETM has been characterized4. We used micro-CT to generate high-resolution 3D digital models of  pri-
mate M2’s recovered from PETM sediments (see Results for summary table) and applied three complimentary 

quantitative dietary ecology metrics using the free MorphoTester software11:

Relief Index (RFI):
• Compares three dimensional surface area to two dimen-
sional surface area of tooth crown
• Performs well at differentiating extant prosimian diets 
based on the amount of incorporated structural 
carboyhdrates13

• Folivores have higher RFI than frugivores and granivores

Modifed from Ref. 12
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Dirichlet Normal Energy:
• Considers the normal direction of each point on the tooth face
• If normal directions of adjacent points greatly diverge, the 
normal map between them grows orthogonally
• Calculated as an increase in the Dirichlet energy, capturing the 
curviness of crown morphology
• Independent of position, orientation, or scale
• Higher in taxa with molar crowns adapted for shearing such as 
insectivores and folivores8

Tupaia Hapalemur

LepilemurMicrocebus From Ref. 8

Orientation Patch Count (OPCR):
• Groups ‘patches’ of tooth crown faces based on their 
shared orientation (minimum # of faces = 3)
• Patch count averaged from eight views of tooth crown
• Differentiates mammals within orders based on the com-
plexity of tooth crown morphology
• Teeth of herbivorous taxa tend to have high OPCR, 
whereas carnivorous taxa have low OPCR14

Cantius torresiNiptomomys doreenae

2. Materials & Methods

3D Occlusal View 2D Occlusal View
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